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The mod-n scheme is introduced to the coupled-cluster singles and doubles �CCSD� and third-order Møller-
Plesset perturbation �MP3� methods for extended systems of one-dimensional periodicity. By downsampling
uniformly the wave vectors in Brillouin-zone integrations, this scheme accelerates these accurate but expensive
correlation-energy calculations by two to three orders of magnitude while incurring negligible errors in their
total and relative energies. To maintain this accuracy, the number of the nearest-neighbor unit cells included in
the lattice sums must also be reduced by the same downsampling rate �n�. The mod-n CCSD and MP3 methods
are applied to the potential-energy surface of polyethylene in anharmonic frequency calculations of its infrared-
and Raman-active vibrations. The calculated frequencies are found to be within 46 cm−1 �CCSD� and 78 cm−1

�MP3� of the observed.
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I. INTRODUCTION

The coupled-cluster singles and doubles �CCSD� �Refs. 1
and 2� and second-, third-, and fourth-order Møller-Plesset
perturbation �MP2, MP3, and MP4� methods1–7 have been
implemented for extended systems of one-dimensional peri-
odicity. Their formalisms and systematic accuracy for insu-
lators and semiconductors are well documented. Their appli-
cations to crystalline polymers have, however, not been
widespread owing to their immense computational cost. MP2
involves a computational step whose operational complexity
increases as O�K3�, where K is the number of wave vector �k
vector� sampling points in the first Brillouin zone �BZ�. The
value of K that ensures the convergence of preceding
Hartree-Fock �HF� calculations is in the range of 10–20. This
implies that an MP2 calculation of a one-dimensional ex-
tended system is three to four orders of magnitude as expen-
sive as that of a molecule of size similar to the unit cell. The
K dependence of the costs of MP3 and CCSD is even worse:
O�K4�.

In this work, we introduce a scheme—the mod-n
scheme—that reduces the effective value of K and thereby
accelerates the MP3 and CCSD calculations for one-
dimensional extended systems by two to three orders of mag-
nitude with an error of a few percent in correlation energies.
It is based on uniform downsampling of k vectors in BZ
integrations,8,9 which has been shown to speed up MP2 cal-
culations by one order of magnitude �see also related expo-
nential downsampling10�. It proves to be even more effective
for MP3 and CCSD, although the latter require an additional
adjustment to their formalisms. We demonstrate the utility of
mod-n MP3 and CCSD by applying them to the potential-
energy surface �PES� of polyethylene in the anharmonic fre-
quency calculations of its infrared- and Raman-active vibra-
tions. Systematic improvements in the calculated frequencies
as we increase the level of theory from MP2 to MP3 and
from MP3 to CCSD implies the reliability of the relative
energies obtained with this scheme.

II. COMPUTATIONAL METHOD

The MP3 and CCSD correlation energies per unit cell2

can be obtained by evaluating
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respectively, where i, j, k, and l refer to occupied bands, a, b,
c, and d unoccupied bands, and D is an orbital-energy dif-
ference,
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Each of the k vectors can take one of the K allowed values in
the first BZ,
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k =
2m

K
, �4�

where the lattice constant a �not shown� is equal to � in our
length unit and m is an integer in the range: 0�m�K. The
evaluation of Eqs. �1� and �2� involves, respectively, O�K4�
and O�K3� arithmetic operations.

The Fock �f� and two-electron integrals �v and w� in the
crystal-orbital �CO� basis are defined with the corresponding
quantities in the atomic-orbital �AO� basis2 as
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ikijkj =2vakabkb

ikijkj −vbkbaka

ikijkj , where ciki

�ki�, caka

�ka, etc. are CO
coefficients to be determined by the HF procedure and S and
L are integer parameters used in the Namur criteria for lattice
summation truncations.11 The appropriate value of L is ap-
proximately K /2. These integrals vanish identically unless
the momentum conservation conditions are satisfied,

ka − ki = 2m1, �7�

ka + kb − ki − kj = 2m2, �8�

for one- and two-electron integrals, respectively, where m1
and m2 are integers. Because of these conditions, each term
in Eq. �1� has only fourfold k summation though there are six
distinct k vectors in the summand.

The unknown coefficients �the t amplitudes� in Eq. �2� are
obtained by solving coupled nonlinear equations. These
equations �the t1- and t2-amplitude equations� are written as
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where P	ikijkj

akabkb =	ikijkj

akabkb +	ikijkj

bkbaka with 	 designating an arbi-
trary tensor. The intermediate quantities ��, �, and �� are
defined elsewhere.2 The cost of solving these equations
scales as O�K4� because, for instance, evaluating the second
term in the right-hand side of Eq. �10� involves O�K4� arith-
metic operations.

Our mod-n scheme8,9 accelerates these electron-
correlation calculations by sampling only every nth of the k
vectors used in the HF step. In other words, each k vector in
the MP3 or CCSD step can now take one of the following
K /n allowed values:

k =
2nm

K
, �11�

where m is an integer in the range: 0�nm�K. It is stipu-
lated that n evenly divides K. Designating this set of k vec-
tors by Kn, the mod-n MP3 and CCSD correlation energies
are evaluated as
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ikijkj ṽckcjkj

kkkbkbw̃akackc

ikikkk�

Dakabkb

ikijkj Dakackc

ikikkk

−
2n4

K
�

i,j,k,a,b,c
�

ki,kj,ka,kc�Kn
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ikijkj . Note the reduction in the long-
range cutoff in Eq. �14�. The costs of evaluating Eqs. �12�
and �13� are only n−4 and n−3 of those of evaluating the
corresponding original equations.

The t-amplitude equations, Eqs. �9� and �10�, are also ad-
justed accordingly by systematically making the replace-
ment,

�
kp

� n �
kp�Kn

. �15�

Each such replacement contributes to an n-fold reduction in
the cost of the summation. Overall, therefore, the solution of
the t-amplitude equations is accelerated by a factor of n4 by
the mod-n scheme.

The presence of the weights such as n4 in Eq. �12� distin-
guishes the mod-n scheme from other orbital compression
schemes �for example, Ref. 12� that discard orbitals but do
not compensate for the neglected contributions. These

weights indeed allow as much as 80% of orbitals to be un-
sampled and nearly �sometimes more than� 100% of the cor-
relation energies to be recovered.

The mod-n scheme can be justified for insulators and
semiconductors on a rigorous physical basis.8–10 Note that
the correlation interaction summed in MP3 and CCSD ener-
gies decay much more rapidly with distance �as r−6 at the
slowest� than does the Coulomb �J� interaction in the HF
energy �decaying as r−3 at the slowest�. Since K corresponds
to the number of unit cells under the periodic boundary
conditions,13 it needs to be as great as twice the number of
the nearest-neighbor unit cells the interaction reaches. The
value of K in the MP3 and CCSD step, therefore, can be
much smaller than that for the HF step. This also requires
that the real-space lattice sums be truncated in a smaller ra-
dius as in Eq. �14�. This argument can be viewed as an ap-
plication of Shannon’s sampling theorem.14 This physical ba-
sis is the near sightedness of correlation in the words of
Kohn15 and is the same as that underlies local-basis, linear-
scaling algorithms such as the Wannier-orbital-based method
of Förner et al.,16 the AO-based method of Ayala et al.,17 and

TABLE I. The electron correlation energies �in Eh� of polyeth-
ylene obtained by the mod-n MP2, MP3, and CCSD method with
the STO-3G basis set and K=24. The breakdown of the CCSD
correlation energies into the mth nearest C2H4 unit-cell contribu-
tions is also shown. The B3LYP /6-31G� geometry of Ref. 21 was
used.

n 2 3 4 6

EMP2
�n� −0.10320 −0.10324 −0.10330 −0.10349

EMP3
�n� −0.02282 −0.02280 −0.02277 −0.02268

ECCSD
�n� −0.13574 −0.13576 −0.13580 −0.13594

m=0 −0.13419 −0.13419 −0.13420 −0.13431

m=1 −0.00154 −0.00155 −0.00158 −0.00147

m=2 0.00001 0.00000 0.00007 −0.00016

m=3 −0.00001 0.00002 −0.00010

m=4 −0.00001 −0.00005

m=5 0.00001

m=6 −0.00002
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FIG. 1. The CPU time spent by mod-n MP3 and CCSD �one
iteration� for polyethylene �K=24 and the STO-3G basis set� as a
function of n on a 3.2-GHz Intel Xeon EM64T processor with a
4-GB RAM. The dashed line represents the n−4 dependence.
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the divide-and-conquer method of Kobayashi et al.18–20

Conversely, the mod-n scheme cannot be justified for
metals, in which correlation interactions do not decay so rap-
idly. For systems with vanishing band gaps, the MP2 and
MP3 energies are divergent and even HF and CCSD may be
inadequate with and without the mod-n approximation. How-
ever, there should be no difficulty in applying the mod-n
scheme to two- and three-dimensional insulators and semi-
conductors.

Equations �5� and �6� indicate that elements of f scale as
K0 whereas elements of v and w display K−1 dependence.
Remembering that each fourfold k summation in Eq. �1� con-
tributes a factor of K4, one can infer that EMP3 is a K0 quan-
tity and is, therefore, size intensive. If one assumes that t1, �,
and � scale as K0 and t2 and � as K−1, one can show that
ECCSD is size intensive. It can be readily verified that Eqs. �9�
and �10� exhibit consistent K dependence under this same
assumption, proving the size extensivity of CCSD. The sub-
stitutions of Eq. �15� do not alter this conclusion.

One example of the mod-n approximation is the 
 ap-
proximation obtained by setting n=K.8 It takes into account
only the k=0 �
-point� contributions in the lattice summa-
tions. It also amounts to the effective value of K being unity
and, therefore, makes any correlation method size extensive
because quantities in its formulation can no longer depend on
K or display inconsistent K dependence. We do not consider
this approximation for MP3 or CCSD but use it in anhar-
monic vibrational treatments �see below�.

III. RESULTS AND DISCUSSION

All calculations were performed on polyethylene using
the frozen core approximation and S=6 and L=10 as the

short- and long-range cutoff parameters of the lattice sum-
mations.

Figure 1 plots the CPU time spent by the mod-n MP3 and
CCSD calculations with n=2, 3, 4, or 6 and K=24. The
observed speedup nearly exactly agrees with the theoretical
value of n4. The mod-6 scheme, therefore, is estimated to
achieve the incredible 1300-fold speedup relative to the con-
ventional �n=1� calculation, which has not been feasible be-
cause of too great a storage requirement. The mod-n scheme
reduces the latter by a factor of n3 or 216 at n=6.

Table I compares the correlation energies obtained by the
mod-n MP2, MP3, and CCSD methods. The errors intro-
duced by the mod-n scheme �as judged by the comparison
with the mod-2 results� are no more than a few tenths of
1 mEh or a few tenths of 1% of the total correlation energy
in all cases, which are tolerable in view of the enormous
speedup. The observed errors in mod-n MP3 and CCSD for
polyacetylene �not shown� are somewhat greater than those
in polyethylene and we thus place the typical errors of these
methods to be a few percent of total correlation energies.

The breakdown of the CCSD correlation energy into unit-
cell contributions was obtained by the procedure described in
Ref. 2. Approximately 99% of the correlation energy comes
from the central unit cell �m=0�. The first nearest-neighbor
cell �m=1� accounts for the vast majority of the remainder.
This rapid decay of correlation interactions with distance in
this insulator justifies essentially the second-nearest-neighbor
approximation, to which the mod-6 scheme corresponds. The
magnitudes of the one-electron integrals also drop to less
than 4% of the intracell values in the second-nearest-
neighbor cell.

TABLE II. Harmonic �HRM� and anharmonic �VCI� frequencies �in cm−1� of the infrared- or Raman-
active vibrations in polyethylene obtained with multiresolution 3MR PESs computed by mod-n MP2 /6-31G�

for V1 and HF /6-31G� for V2+V3 with K=20.

Mode

n=1 �Ref. 22� n=5 n=10

Obs. �Refs. 27 and 28�HRMa VCI HRMa VCI HRMa VCI

�6��� 3244 3000 3244 2998 3239 2989 2920

�6�0� 3204 2964 3204 2962 3197 2954 2881

�1��� 3177 2929 3177 2927 3174 2922 2850

�1�0� 3164 2925 3163 2924 3157 2864 2846

�2��� 1566 1528 1566 1528 1562 1522 1475

�2�0� 1543 1494 1542 1493 1535 1477 1442

�3��� 1430 1421 1430 1422 1426 1452 1412

�7��� 1337 1317 1338 1317 1339 1318 1295

�3�0� 1201 1205 1201 1204 1198 1202 1173

�7�0� 1235 1221 1234 1220 1221 1208 1172

�4�0� 1180 1163 1180 1162 1164 1145 1134

�4��� 1107 1099 1108 1100 1098 1123 1062

�8�0� 1071 1080 1070 1080 1070 1080 1050

�8��� 693 752 691 751 662 734 722

maxb 327 83 327 81 324 73

madb 127 47 127 47 123 40

aApproximate values �see text�.
bThe maximum and mean absolute deviations from the observed.
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How accurately does the mod-n scheme reproduce rela-
tive energies? Previously, we examined this question by
comparing MP2 quasiparticle energies with and without the
mod-n scheme8,9 and concluded that the scheme remains re-
liable for relative energies. In this work, we address this by
applying mod-n MP2, MP3, and CCSD to the PES of poly-
ethylene in harmonic and anharmonic frequency calculations
of its infrared- and Raman-active �k=0� vibrations.

The vibrational Schrödinger equation of polyethylene was
solved22 by vibrational configuration interaction �VCI� in the

 approximation8 as implemented in SINDO.23 As stated ear-
lier, the 
 approximation is the mod-n scheme with n=K. In
this limit, any vibrational method—even VCI—becomes size
extensive.22 It can only yield the energies of in-phase �k
=0� vibrations, which are, however, the ones observable by
infrared and Raman spectroscopies. The force constants
needed for these calculations are those with respect to in-
phase normal coordinates, which can be obtained by the CO
calculations adopting the most compact unit cells, namely,
without the supercell or frozen phonon approach.

The PES was approximated by a quartic force field24 in
the three-mode coupling �3MR� approximation.25 Its intrinsic
one-, two-, and three-mode coupling contributions �V1, V2,
and V3, respectively� were computed by different electronic
structure methods:26 V1 by mod-n MP2, MP3, or CCSD and
V2 and V3 by HF, all with the 6-31G� basis set. The vibra-
tional self-consistent field �VSCF� calculations in the 
 ap-
proximation were performed initially on the zero-point state,
employing the 11 lowest-lying harmonic-oscillator wave
functions along each k=0 normal mode. The VCI problems
�again in the 
 approximation� were then solved using the

VSCF states as the basis set, where up to quadruple excita-
tions were included with the maximum sums of quantum
numbers restricted to 5. The convergence of the frequencies
was verified by increasing these parameters. Harmonic fre-
quencies were also obtained, albeit approximately, by zero-
ing cubic and quartic force constants. Further details such as
the geometry and normal modes used can be found in Ref.
22.

Table II compares the harmonic and anharmonic frequen-
cies of polyethylene obtained, at least partly, by mod-n MP2
with n=1, 5, or 10 and K=20. The frequencies obtained with
n=5 do not differ from those without the mod-n approxima-
tion �n=1� �Ref. 22� more than 2 cm−1. This attests to the
fact that the errors incurred by the mod-5 scheme in the
shape of the PES are negligible. The mod-10 scheme causes
slightly greater errors, which are still surprisingly small con-
sidering that the effective value of K is only two. On the
basis of this comparison, we elect to use the mod-5 scheme
for the rest of the calculations.

Table III compiles the results obtained with the mod-5
MP2, MP3, and CCSD calculations for V1 and the HF cal-
culations for V2 and V3. In view of the comparison in Table
II, we expect the MP3 and CCSD frequencies in Table III to
be within a few reciprocal centimeter of the corresponding
values without the mod-n scheme, which would cost, if fea-
sible, estimated 625 times as much CPU time and 125 times
as much disk space as the mod-5 calculations.

As the level of electron-correlation theory is increased
from MP2 to MP3 and CCSD, the harmonic frequencies do
not improve substantively and the errors from the
observed27,28 remain greater than 300 �maximum� and 120

TABLE III. Harmonic �HRM� and anharmonic �VCI� frequencies �in cm−1� of the infrared- or Raman-
active vibrations in polyethylene obtained with multiresolution 3MR PESs computed by mod-5
MP2 /6-31G�, MP3 /6-31G�, or CCSD /6-31G� for V1 and HF /6-31G� for V2+V3 with K=20.

Mode

MP2 MP3 CCSD

Obs. �Refs. 27 and 28�HRMa VCI HRMa VCI HRMa VCI

�6��� 3244 2998 3235 2991 3224 2957 2920

�6�0� 3204 2962 3193 2957 3182 2926 2881

�1��� 3177 2927 3175 2928 3164 2896 2850

�1�0� 3163 2924 3163 2864 3154 2840 2846

�2��� 1566 1528 1568 1531 1557 1520 1475

�2�0� 1542 1493 1545 1495 1534 1486 1442

�3��� 1430 1422 1446 1450 1433 1444 1412

�7��� 1338 1317 1341 1319 1331 1312 1295

�3�0� 1201 1204 1206 1210 1197 1205 1173

�7�0� 1234 1220 1239 1224 1231 1218 1172

�4�0� 1180 1162 1186 1167 1183 1163 1134

�4��� 1108 1100 1109 1103 1102 1101 1062

�8�0� 1070 1080 1075 1083 1081 1078 1050

�8��� 691 751 691 750 735 747 722

maxb 327 81 325 78 314 46

madb 127 47 129 46 121 34

aApproximate values �see text�.
bThe maximum and mean absolute deviations from the observed.
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�mean� cm−1. The inclusion of the effect of anharmonicity by
VCI reduces the maximum and mean absolute deviations by
factors of 4–7 and 3, respectively. The calculated anhar-
monic frequencies, on the other hand, systematically ap-
proach the observed as the theoretical level is raised. The
anharmonic frequencies of CCSD are within only 46 cm−1

of the observed without empirical scaling of force constants
or harmonic frequencies.

IV. CONCLUSION

This paper has reported an ab initio correlated treatment
of both electronic and vibrational degrees of freedom in ex-
tended systems of one-dimensional periodicity. Electron cor-
relation has been described, at least partly, by CCSD,
whereas vibrational correlation �anharmonicity� by VCI. The

mod-n approximation has been crucial in making the elec-
tronic part of the calculation feasible by reducing the opera-
tion and storage cost by three and two orders of magnitude,
respectively, relative to the conventional calculation. The 

approximation, which is a special case of the mod-n scheme,
has rendered the VCI treatment size extensive and applicable
to extended systems.
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